Markov chain Monte Carlo for active module identification problem
نویسندگان
چکیده
منابع مشابه
Markov Chain Monte Carlo
Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...
متن کاملMarkov Chain Monte Carlo
This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with the basic theory of Markov chains and build up to a theorem that characterizes convergent chains. We then discuss the MetropolisHastings algorithm.
متن کاملMarkov chain Monte Carlo
One of the simplest and most powerful practical uses of the ergodic theory of Markov chains is in Markov chain Monte Carlo (MCMC). Suppose we wish to simulate from a probability density π (which will be called the target density) but that direct simulation is either impossible or practically infeasible (possibly due to the high dimensionality of π). This generic problem occurs in diverse scient...
متن کاملA Markov-Chain-Monte-Carlo-Based Method for System Identification
This paper describes a novel methodology for the identification of mechanical systems and structures from vibration response measurements. It combines prior information, observational data and predictive finite element models to produce configurations and system parameter values that are most consistent with the available data and model. Bayesian inference and a Metropolis simulation algorithm ...
متن کاملSequential Markov Chain Monte Carlo
Abstract: We propose a sequential Markov chain Monte Carlo (SMCMC) algorithm to sample from a sequence of probability distributions, corresponding to posterior distributions at different times in on-line applications. SMCMC proceeds as in usual MCMC but with the stationary distribution updated appropriately each time new data arrive. SMCMC has advantages over sequential Monte Carlo (SMC) in avo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2020
ISSN: 1471-2105
DOI: 10.1186/s12859-020-03572-9